Подводная нефтяная платформа. Буровая платформа

Нефтяная платформа — это огромный промышленный комплекс, предназначенный для бурения скважин и добычи залегающего на большой глубине углеводородного сырья. Установки для добычи нефти и газа из недр Земли поражают воображение: представьте себе рукотворную конструкцию весом полмиллиона тонн, способную бурить скважины до 10−13 км даже в условиях частичного погружения под воду — и вы поймете, что это триумф инженерной мысли современного человека. Но даже среди этих могучих сооружений есть гиганты, один вид которых вызывает трепет:

TROLL-A

Железобетонная промысловая платформа TROLL-A — это самый тяжелый в мире искусственный объект, способный перемещаться по поверхности нашей планеты. Общий вес платформы по добыче природного газа составляет 1,2 миллиона тонн при загруженном балласте, (сухой вес — порядка 650−680 000 тонн) а высота — 472 метра (из которых 369 занимает подводная бетонная структура). Это — настоящее чудо инженерной мысли, установленное на норвежском газонефтяном месторождении Troll в Северном море.

Буровые установки «Уралмаш»


Самые большие наземные буровые установки с 70-х годов производили в нашей стране. БУ «Уралмаш-15000» была задействована при бурении Кольской сверхглубокой скважины: конструкция высотой с 20-этажный дом была способна пробурить скважину глубиной до 15 км! А вот самыми большими установками на плавучих платформах, считаются системы Aker H-6e (на фото), тоже произведенные норвежцами. Площадь рабочей палубы такой конструкции составляет 6300 м 2 , а глубина бурения достигает 10 км.

Statfjord-B


Нельзя пройти мимо буровой установки Statfjord-B, самого большого плавучего технического сооружения в мире. Высота вышки, построенной в Норвегии в 1981 году, вместе с бетонным основанием составляет 271 метр, а общий вес конструкции — 840 000 тонн. Промышленный комплекс может добывать до 180 000 баррелей нефти в день, при этом резервуаров хватит на 2 000 000 баррелей. Более того, платформа представляет собой настоящий город на воде: помимо буровой установки, на ней размещены семиэтажная гостиница высокого класса, химлаборатория, вертолетная площадка и целый парк спасательной и вспомогательной техники.

Perdido Spar


А вот самая глубоководная платформа расположена в Мексиканском заливе, где пришвартована на глубине 2450 метра над нефтегазовым месторождением Perdido. Максимальная производительность платформы — 100 000 баррелей нефтесырья в день! Высота Perdido Spar составляет 267 метров, то есть это настоящая подводная Эйфелева башня!

Eva-4000


Еще один гигант, но уже нового поколения — буровая платформа Eva-4000, тоже расположенная в Мексиканском заливе, в 240 км от Луизианы. Она принадлежит компании Noble Amos Runner и при высоте в 106 метров (на платформе не предусмотрен жилой комплекс) способна осуществлять бурение на глубине 9700 м.

Типы нефтедобывающих морских платформ

Стабилизацию современных нефтяные платформ в заданном месте в настоящее время обеспечивают не только сваи и якоря, но и применение передовых технологий позиционирования. Платформа может оставаться заякоренной в одной и той же точке в течение нескольких лет, и все это время она должна выдерживать переменчивые морские погодные условия.

Работу бура, выполняющего разрушение донных пород, контролируют специальные подводные роботы. Бур собирается из отдельных стальных трубных секций, длина каждой из которых – 28-мь метров. Современные буры обладают широким спектром своих возможностей. Например, бур, используемый на платформе EVA-4000, может состоять из трёхсот трубных секций, что позволяет проводить бурение на глубину до 9,5 километров.

Строительство буровой платформы заключается в доставке на место предполагаемой добычи и последующего затопления основания плавучей конструкции. На этот своеобразном «фундаменте» затем надстраивают остальные необходимые компоненты.

Изначально такие платформы изготавливались при помощи сварки решетчатых башен, имеющих форму усеченной пирамиды, из металлических труб и профилей, которые затем намертво прибивали сваями к морскому или океанскому дну. На таких конструкциях впоследствии устанавливалось необходимое буровое или эксплуатационное оборудование.

Когда появилась необходимость разработки месторождений, расположенных в северных широтах, потребовались ледостойкие платформы. Это привело к тому, что инженерами были разработаны проекты сооружения кессонных оснований, фактически представляющих собой искусственные острова. Сам такой кессон заполняют балластом, в качестве которого, как правило, выступает песок. Ко дну моря такое основание прижимается под действием своего собственного веса, на который действуют силы гравитации.

Однако, со временем размеры морских плавучих сооружений стали увеличиваться, что вызывало необходимость пересмотреть особенности их конструкций. В связи с этим, разработчиками американской компании Kerr-McGee был создан проект плавучего объекта, имеющего форму навигационной вехи. Сама конструкция является цилиндром, нижняя часть которого заполнена балластом.

Днище этого цилиндра ко дню крепится с помощью специальных донных анкеров. Такое техническое решение дало возможность строительства достаточно надёжных платформ воистину гигантских размеров, которые используются для добычи нефтяного и газового сырья на сверхбольшой глубине.

Справедливости ради стоит сказать, что каких-либо принципиальных отличий между процессом извлечения углеводородного сырья и его последующей отгрузки между добывающими скважинами морского и сухопутного типа нет.

Например, основные элементы стационарной морской платформы совпадают с основными элементами сухопутного промысла.

Главная особенность морской буровой – это, в первую очередь, автономность её работы.

Чтобы достичь такой автономности, морские буровые установки оборудуют очень мощными электрическими генераторами, а также опреснителями морской воды. Запасы на удаленных от берега платформах возобновляются с помощью обслуживающих судов.

Также применение морского транспорта необходимо для доставки всей конструкции к месту добычи, в случае проведения спасательных и противопожарных мероприятий. Транспортировка добытого с морского дна сырья осуществляется посредством донных трубопроводов, а также с помощью танкерного флота или через плавающие нефтехранилища.

Современные технологии в случае, если место добычи расположено неподалеку от побережья, предусматривают бурение наклонно-направленных скважин.

И газа” width=”600″ height=”337″ />

В случае необходимости этот технологический процесс предусматривает применение передовых разработок, позволяющих дистанционно управлять буровыми процессами, чем обеспечивается высокая точность проводимых работ. Такие системы предоставляют оператору возможность отдавать буровому оборудованию команды даже с расстояния нескольких километров.

Глубины добычи на морском шельфе, как правило, находятся в пределах двухсот метров, в отдельных случаях достигая значения в полкилометра. Применение той или иной буровой технологии напрямую зависит от глубины залегания продуктивного слоя и удалённости места добычи от берега.

На участках мелководья, как правило, возводят укреплённые основания, представляющие собой искусственные острова, на которых впоследствии монтируется бурильное оборудование. В некоторых случаях на мелководье применяется технология, предусматривающая ограждение участка добычи системой дамб, что дает возможность получить огороженный котлован, из которого затем можно откачать воду.

В случаях, когда от места разработки до берега – сотня или более километров, без использования плавучей нефтяной платформы уже никак не обойтись. Самыми простыми по своей конструкции являются платформы стационарного типа, однако их можно применять только при глубине добычи несколько десятков метров, поскольку на таком мелководье есть возможность закрепить стационарную конструкцию при помощи свай или бетонных блоков.

Начиная с глубин около 80-ти метров, начинается использование плавучих платформ, оборудованных опорами. На участках с большими глубинами (до 200 метров) закрепить платформу уже становится проблематично, поэтому в таких случаях используются буровые установки полупогружного типа.

На месте такие платформы удерживаются с помощью якорных систем и систем позиционирования, которые представляют собой целый комплекс подводных двигателей и якорей. Бурение на сверхбольших глубинах осуществляется с помощью специализированных буровых судов.

При обустройстве морских скважин применяется как одиночный, так и кустовой методы. В последние годы стали практиковать применение так называемых передвижных буровых оснований. Сам процесс морского бурения выполняется при помощи райзеров, которые представляют собой опускаемые до самого дна трубные колонны больших диаметров.

После того, как процесс бурения заканчивается, на дно ставится многотонный превентор, который представляет собой противовыбросную систему, а также устьевая арматура. Все это дает возможность предотвратить утечки добываемого сырья из пробуренной скважины в открытые воды. Кроме того, обязательно устанавливается и запускается контрольно-измерительное оборудование, следящее за текущим состоянием скважины. Сам подъем нефти на поверхность производится при помощи системы гибких шлангов.

Как становится понятно, сложность и высокий уровень технологичности процессов по освоению морских месторождений – очевидны (даже без углубления в технические детали таких процессов). В связи с этим возникает вопрос: «Является ли такая сложная и затратная нефтедобыча целесообразной?» Однозначно – да. Здесь основными факторами, говорящими в её пользу, являются постоянно растущий спрос на нефтепродукты при постепенном истощении сухопутных месторождений. Все это перевешивает затратность и сложность такой добычи полезных ископаемых, поскольку сырье востребовано и окупает затраты на свою добычу.

DIV_ADBLOCK26">

Некоторые интересные факты о морской добыче нефти

Самой большой нефтяной платформой в мире считается размещенная в Северном море норвежская платформа под названием «Тролл-А». Её высота составляет 472 метра, а общая масса – 656 тысяч тонн.

В Соединенных Штатах датой начала американской морской нефтедобычи считают 1896-ой год, а её основателем – калифорнийского нефтяника по фамилии Уильямс, который уже в те годы бурил скважины, используя построенную им собственноручно насыпь.

В 1949-ом году на расстоянии 42 километра от Апшеронского полуострова, на металлических эстакадах, которые были возведены для нефтедобычи со дна Каспийского моря, построили целый поселок, который был назван «Нефтяные Камни». В этом поселке обслуживающие работу промысла люди жили по нескольку недель. Эта эстакада (Нефтяные Камни) даже появилась в одном из фильмов «Бондианы», который назывался «И целого мира мало».

С появлением плавучих буровых платформ появилась необходимость обслуживания их подводного оборудования. В связи с этим стало активно развиваться глубоководное водолазное оборудование.

Для быстрой герметизации нефтяной скважины в случае возникновения аварийных ситуаций (к примеру, если шторм бушует такой силы, что буровое судно на месте удержать не удается), используется превентер, который представляет собой своеобразную пробку. Длина такой «пробочки» может доходить до 18-ти метров, а весить такой превентер может до 150-ти тонн.

Основным побудительным мотивом к развитию морской нефтедобычи стал мировой нефтяной кризис 70-х годов прошлого столетия, спровоцированный эмбарго, наложенным странами ОПЕК на поставку черного золота западным странам. Такие ограничения вынудили американские и европейские нефтяные компании искать альтернативные источники нефтяного сырья. Кроме этого, освоение шельфа стало вестись более активно с появлением новых технологий, которые уже в то время позволяли производить морское бурение на больших глубинах.

БУРОВАЯ ПЛАТФОРМА, гидротехническое сооружение для бурения скважин при разработке морских месторождений нефти и газа. В зависимости от конструкции и назначения различают морские стационарные платформы (для эксплуатационного бурения) и плавучие буровые установки (для поисково-разведочного бурения).

Морские стационарные платформы, в основном трёхъярусные, используют при глубинах до 350 м для одновременного бурения, добычи и подготовки пластовой продукции к транспортировке. Платформы, предназначенные только для бурения нефтяных или газовых скважин, изготавливают в одноярусном исполнении. С палубы буровой платформы, находящейся на недосягаемой для волн высоте, одним или двумя буровыми станками может осуществляться строительство нескольких десятков вертикальных, наклонно направленных, горизонтальных и разветвлённых (многозабойных) скважин. Стационарные буровые платформы закрепляются на морском дне следующими способами: свайным (забивка в морское дно свай, жёстко скреплённых с опорным блоком буровой платформы); гравитационным (удерживаются на дне за счёт массы сооружения, при этом опорный блок заполняется грунтом или водой для надёжного оседания на морское дно); комбинированным, или свайно-гравитационным (затапливаемый опорный массив, располагаемый на дне, дополнительно закрепляется сваями по всему периметру); с помощью якорных цепей или натяжных тросов (если опорный блок буровой платформы выполнен из понтонов, погружённых в воду полностью или частично). Опорный блок буровой платформы выполняют стальным (преимущественно трубчатым), железобетонным или же комбинированным (железобетонная гравитационная нижняя часть, верхняя - стальная решётчатая конструкция). Надводная часть буровой платформы включает основные комплексы: буровой, эксплуатационный, энергетический, жилой и жизнеобеспечения. В акваториях арктических морей используют буровые платформы в ледостойком исполнении с опорами в форме цилиндра, призмы или конуса для снижения ледовой нагрузки.

Плавучие буровые установки подразделяют на погружные (ПБУ), самоподъёмные (СПБУ), полупогружные (ППБУ) и буровые суда (БС).

ПБУ предназначены для бурения скважин на мелководье в диапазоне глубин от 2 до 20 м (некоторые до 50 м). Все ПБУ имеют подводный корпус (затопляемый понтон), на который опираются опорные колонны. Для подъёма ПБУ со дна используется система размыва грунта под днищем для уменьшения сил присоса.

С СПБУ ведётся разведочное бурение на глубинах от 5 до 150 м. СПБУ состоит из водоизмещающего корпуса (понтона), опорных колонн (от 3 до 6), подъёмных механизмов и буровой вышки. В корпусе имеются помещения различного назначения - для размещения оборудования, складские, жилые каюты. При транспортировке СПБУ опорные колонны максимально выдвинуты вверх. На точке бурения колонны опускаются на грунт, корпус с помощью гидравлического или электромеханического подъёмника поднимается из воды, а нижняя часть колонн, оборудованная специальными башмаками, вдавливается в грунт.

ППБУ и БС используются при глубинах моря 150-1500 м. Устойчивость ППБУ обеспечивается формой корпуса понтона, расстоянием между понтонами, а также числом и диаметром опорных колонн, на которых установлена надводная часть. ППБУ и БС фиксируются на точке бурения с помощью якорных систем или путём обеспечения динамического позиционирования, осуществляемого специальными движителями, встроенными в корпус погружённого в воду понтона. БС, в отличие от других типов плавучих буровых установок, сохраняют высокие мореходные качества, свойственные обычным судам.

Лит.: Вяхирев Р. И., Никитин Б. А., Мирзоев Д. И. Обустройство и освоение морских нефтегазовых месторождений. М., 2001.

Освоение морских месторождений нефти и газа потребовало создания уникальных сооружений — морских стационарных платформ. Зафиксироваться на одной точке посередине открытого моря — это очень сложная задача. И за последние десятилетия разработаны интереснейшие решения, без преувеличения примеры инженерного гения.

История выхода нефтяников в море началась в Баку, на Каспийском море, и близ Санта-Барбары, штат Калифорния, на Тихом океане. Как российские, так и американские нефтяники пытались строить своего рода пирсы, которые уходили в море на несколько сот метров, чтобы начать бурение уже открытых на суше месторождений. Но настоящий прорыв произошел в конце 1940-х годов, когда опять же близ Баку и теперь уже в Мексиканском заливе начались работы в открытом море. Американцы гордятся достижением компании Kerr-McGee, которая в 1947 году пробурила первую промышленную скважину «вне видимости суши», то есть на расстоянии примерно 17 км от берега. Глубина моря была маленькая — всего 6 метров.

Однако знаменитая Книга рекордов Гиннесса первой в мире нефтедобывающей платформой считает знаменитые «Нефтяные камни» (Neft Daslari — азерб.) близ Баку. Сейчас это грандиозный комплекс платформ, который продолжает функционировать с 1949 года. Он состоит из 200 отдельных платформ и оснований и является настоящим городом в открытом море.

В 1950-е годы шло строительство морских платформ, основание которых представляли собой решетчатые башни, сваренные из металлических труб или профилей. Такие конструкции буквально прибивались к морскому дну специальными сваями, что обеспечивало им устойчивость при волнении. Сами конструкции были достаточно «прозрачны» для проходящих волн. Форма такого основания напоминает усеченную пирамиду, в донной части поперечник такой конструкции может быть вдвое шире, чем в верхней, на которой и устанавливается сама буровая платформа.

Существует множество конструкций подобных платформ. Собственные разработки, созданные на основе опыта эксплуатации «Нефтяных камней», были в СССР. Например, в 1976 году была установлена платформа «Имени 28 апреля» на глубине 84 метров. Но все же самой знаменитой платформой такого типа является Cognac в Мексиканском заливе, установленная для компании Shell в 1977 году на глубине 312 метров. Долгое время это был мировой рекорд. Разработка подобных платформ для глубин 300-400 метров ведется и поныне, однако подобные конструкции не могут сопротивляться ледовым атакам, и для решения данной проблемы были созданы специальные ледостойкие конструкции.

В 1967 году на арктическом шельфе Аляски было открыто крупнейшее американское месторождение Прудо-Бей. Потребовалось разработать стационарные платформы, которые бы выдержали ледовую нагрузку. Уже на ранних этапах появились две базовые идеи — создания больших кессонных платформ, а по сути своеобразных искусственных островов, которые бы выдерживали навал льда, либо же платформ на сравнительно тонких ногах, которые бы пропускали лед, разрезая этими ногами его поля. Таким примером является платформа Dolly Varden, прибитая к морскому дну через свои четыре стальные ноги, диаметр каждой из которых чуть больше 5 метров, при том, что расстояние между центрами опор — почти 25 метров. Сваи, которыми крепится платформа, уходят в грунт на глубину около 50 метров.

Примерами кессонной ледостойкой платформы являются платформы «Приразломная» в Печерском море и Molikpaq, она же «Пильтун-Астохская-А» на шельфе острова Сахалин. «Моликпак» разработан и построен для работы в море Бофорта, а в 1998 году она прошла реконструкцию и приступила к работе уже на новом месте. «Моликпак» представляет собой кессон, заполненный песком, который служит балластом, прижимающим дно платформы к поверхности морского дна. По сути дела дно «Моликпака» — огромная присоска, состоящая из нескольких секций. Эта технология была с успехом развита норвежскими инженерами в процессе освоения глубоководных месторождений Северного моря.

Североморская эпопея началась еще в ранние 70-е, однако поначалу нефтяники вполне обходились без экзотических решений — они строили проверенные платформы из трубчатых ферм. Новые решения потребовались при движении на большие глубины. Апофеозом строительства бетонных платформ стала башня Troll A, установленная на глубине 303 метров. Основание платформы представляет собой комплекс железобетонных кессонов, которые присасываются к морскому дну. Из основания растут четыре ноги, которые и поддерживают саму платформу. Общая высота этого сооружения — 472 метра, и это самое высокое сооружение, которое когда-либо перемещали в горизонтальной плоскости. Секрет тут еще в том, что такая платформа передвигается без барж, — ее надо только буксировать.

Определенным аналогом «Тролля» является ледостойкая платформа «Луньская-2», установленная в 2006 году на сахалинском шельфе. Несмотря на то, что глубина моря там всего около 50 метров, она, в отличие от «Тролля», должна сопротивляться ледовым нагрузкам. Разработка платформы и ее строительство велось норвежскими, российскими и финскими специалистами. Ее «сестрой» является однотипная платформа «Беркут», которая установлена на Пильтун-Астохском месторождении. Ее технологический комплекс, построенный компанией Samsung, является крупнейшим в мире сооружением такого рода.

80-е и 90-е годы ХХ века ознаменовались появлением новых конструктивных идей для освоения глубоководных месторождений нефти. При этом формально нефтяники, пересекая 200-метровую глубину, вышли за пределы шельфа и стали спускаться глубже по материковому склону. Циклопические конструкции, которые должны были стоять на морском дне, приближаются к пределу возможного. И новое решение предложили вновь в компании Kerr-McGee — построить плавучую платформу в форме навигационной вехи.

Идея до гениальности проста. Строится цилиндр большого диаметра, герметичный и очень длинный. В нижней части цилиндра размещается груз из материала, который имеет удельный вес больше, чем у воды, — например, песок. В результате получается поплавок с центром тяжести далеко ниже уровня воды. За свою нижнюю часть платформа типа Spar крепится тросами к донным анкерам — специальным якорям, которые ввинчены в морское дно. Первая платформа такого типа под названием Neptune была построена в Мексиканском заливе в 1996 году на глубине 590 метров. Длина конструкции более 230 метров при диаметре 22 метра. На сегодняшний день самой глубоководной платформой такого типа является установка Perdido, работающая на компанию Shell, в Мексиканском заливе на глубине 2450 метров.

Освоение морских месторождений требует все новых и новых разработок и технологий не только в собственно строительстве платформ, но и по части обслуживающей их инфраструктуры — такой как трубопроводы, например, которые должны обладать особенными свойствами для работы в морских условиях. Этот процесс идет во всех развитых странах, которые занимаются выпуском соответствующей продукции. В России, например, уральские трубники из ЧТПЗ активно развивают производство трубной продукции, специально ориентированной для эксплуатации на шельфе и в сложных условиях Арктики. В начале марта были представлены новые разработки — такие, как трубы большого диаметра для райзеров (водоотделяющих колонн, связывающих платформу с подводным оборудованием) и прочих конструкций, требующих стойкости в условиях Арктики. Работы ускоряет необходимость в импортозамещении — от российских компаний поступает все больше запросов на обсадные трубы и прочее оборудование для обустройства скважин под водой. Технологии не стоят на месте, а значит, и появляются возможности для освоения новых перспективных месторождений.

Месторождения природного газа находятся не только на суше. Существуют морские месторождения - нефть и газ иногда встречаются и в недрах, скрытых водой.

Берег и шельф

Геологи исследуют как сушу, так и акватории морей и океанов. Если месторождение находят близко к берегу - в прибрежной зоне, то с суши в сторону моря строят наклонные разведочные скважины. Месторождения, которые находятся дальше от берега, относятся уже к зоне шельфа. Шельфом называют подводную окраину материка с таким же геологическим строением, как у суши, и границей его является бровка - резкий перепад глубины. Для таких месторождений используют плавучие платформы и буровые установки, а если глубина небольшая - просто высокие сваи, с которых ведется бурение .

Для добычи углеводородов на морских месторождениях существуют плавучие буровые установки - специальные платформы - в основном трех видов: гравитационного типа, полупогружные и самоподъемные.

Для небольших глубин

Самоподъемные платформы представляют собой плавучие понтоны, в центре которых установлена буровая вышка, а по углам - колонны-опоры. На месте бурения колонны опускаются на дно и углубляются в грунт, а платформа поднимается над водой. Такие платформы могут быть огромными: с жилыми помещениями для рабочих и экипажа, вертолетной площадкой, собственной электростанцией. Но используют их на небольших глубинах, и устойчивость зависит от того, какой грунт на дне моря.

Где глубже

Полупогружные платформы используют на больших глубинах. Платформы не поднимаются над водой, а плавают над местом бурения, удерживаемые тяжелыми якорями.

Буровые платформы гравитационного типа наиболее устойчивы, так как имеют мощное бетонное основание, опирающееся о морское дно. В это основание встроены колонны для бурения скважин, резервуары для хранения добытого сырья и трубопроводы, а поверх основания располагается буровая вышка. На таких платформах могут жить десятки и даже сотни рабочих.

Добытый с платформы газ транспортируется на обработку либо на специальных танкерах, либо по подводному газопроводу (как, например, в проекте «Сахалин-2»)

Морская добыча в России

Поскольку России принадлежит самый обширный в мире шельф, где находится множество месторождений, развитие морской добычи является крайне перспективным для нефтегазовой отрасли. Первые морские скважины для добычи газа в России начала бурить в 2007 году компания «Сахалинская энергия» на Лунском месторождении Сахалина. В 2009 году с платформы «Лунская-А» началась добыча газа. Сегодня проект «Сахалин-2» - один из крупнейших проектов «Газпрома». Две из трех платформ гравитационного типа, установленных на шельфе Сахалина, являются самыми тяжеловесными конструкциями на море за всю историю мировой нефтегазовой отрасли.

Кроме того, «Газпромом» осуществляется проект «Сахалин-3» в Охотском море, готовятся к разработке Штокмановское месторождение в Баренцевом море и Приразломное - в Печорском. Геологоразведочные работы проводятся в акватории Обской и Тазовской губ.

«Газпром» также работает на шельфах Казахстана, Вьетнама, Индии и Венесуэлы.

Как устроен подводный комплекс по добыче газа

В настоящее время в мире насчитывается более 130 морских месторождений, где применяются технологические процессы по добыче углеводородов на морском дне.

География распространения подводной добычи обширна: шельфы Северного и Средиземного морей, Индия, Юго-Восточная Азия, Австралия, Западная Африка, Северная и Южная Америка.

В России первый добычной комплекс будет установлен «Газпромом» на шельфе Сахалина в рамках обустройства Киринского месторождения. Подводные технологии добычи планируется также применять в проекте освоения Штокмановского газоконденсатного месторождения.

Добывающий паук

Подводный добычной комплекс (ПДК) с несколькими скважинами с виду напоминает паука, телом которого является манифольд.

Манифольд - это элемент нефтегазовой арматуры, который представляет собой несколько трубопроводов, обычно закрепленных на одном основании, рассчитанных на высокое давление и соединенных по определенной схеме. На манифольде собираются углеводороды, добытые на нескольких скважинах. Оборудование, которое установлено над скважиной и управляет ее работой, называется фонтанной арматурой, а в зарубежной литературе ее называют Christmas tree (или X-tree) - «рождественской елкой». Несколько таких «рождественских елок» могут быть объединены и закреплены одним темплетом (донной плитой), как яйца в корзинке для яиц. Также на ПДК устанавливаются системы контроля.

По сложности подводные комплексы могут варьироваться от отдельной скважины до нескольких скважин в темплете или сгруппированных около манифольда. Продукция со скважин может транспортироваться либо на морское технологическое судно, где производятся дополнительных технологические процессы, либо сразу на берег, если до берега недалеко.

Гидрофоны для динамической стабилизации судна

На судне имеется дайвинговое оборудование

Среднеглубинная арка поддерживает райзеры перед подачей на судно

По гибким добычным райзерам добытый газ направляется от донной плиты на плавучую установку

Диаметр райзера - 36 см

Установка ПДК производится с помощью специальных судов, которые должны быть снабжены дайвинговым оборудованием для небольших глубин (несколько десятков метров) и робототехникой для больших глубин.

Высота защитной конструкции манифольда - 5 м

Колонны манифольда врезаются в морское дно на глубину 0,5 м

Предыстория

Подводные технологии добычи углеводородов начали развиваться с середины 70-х годов прошлого века. Впервые подводное устьевое оборудование начало эксплуатироваться в Мексиканском заливе. Сегодня подводное оборудование для добычи углеводородов производят порядка 10 компаний в мире.

Изначально задачей подводного оборудования было лишь выкачивание нефти. Первые проекты снижали обратное давление (противодавление) в резервуаре с помощью подводной нагнетательной системы. Газ отделялся от жидких углеводородов под водой, затем жидкие углеводороды выкачивались на поверхность, а газ поднимался под собственным давлением.

В «Газпроме» уверены, что использование подводных добычных комплексов является безопасным. Но такие сложные современные технологии требуют персонала самой высокой квалификации, поэтому при подборе кадров для проектов разработки морских месторождений отдается предпочтение инженерам с большим опытом работы на промыслах. Такой подход позволит снизить риски возникновения происшествий, подобных аварии на буровой платформе BP в Мексиканском заливе, причиной которой, во многом стал именно человеческий фактор.

Сегодня технологии подводной добычи позволяют осуществлять под водой выкачивание углеводородов, разделение газа и жидкости, отделение песка, обратную закачку воды в пласт, подготовку газа, сжатие газа, а также мониторинг и контроль над этими процессами.

Где нужны «добывающие пауки»?

Сначала подводные технологии применялись только на зрелых месторождениях, поскольку они позволяли увеличивать коэффициент извлечения углеводородов. Зрелые месторождения обычно характеризуются низким пластовым давлением и высокой обводненностью (высоким содержанием воды в углеводородной смеси). Для того чтобы увеличить пластовое давление, благодаря которому углеводороды поднимаются на поверхность, в пласт закачивается вода, выделенная из углеводородной смеси.

Однако и новые месторождения могут характеризоваться низким начальным пластовым давлением. Поэтому подводные технологии стали применять как на новых, так и на зрелых месторождениях.

Кроме того, организация части процессов под водой снижает затраты на строительство огромных стальных конструкций. В некоторых регионах целесообразно даже размещать под водой всю технологическую цепочку по извлечению углеводородов. Например, такой вариант может использоваться в Арктике, где надводные стальные конструкции могут повредить айсберги. Если же глубина моря слишком большая, то использование подводного комплекса вместо огромных стальных конструкций бывает просто необходимо.